Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(11)2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-38002292

RESUMO

Adenosine receptors are largely distributed in our organism and are promising therapeutic targets for the treatment of many pathologies. In this perspective, investigating the structural features of the ligands leading to affinity and/or selectivity is of great interest. In this work, we have focused on a small series of pyrazolo-triazolo-pyrimidine antagonists substituted in positions 2, 5, and N8, where bulky acyl moieties at the N5 position and small alkyl groups at the N8 position are associated with affinity and selectivity at the A3 adenosine receptor even if a good affinity toward the A2B adenosine receptor has also been observed. Conversely, a free amino function at the 5 position induces high affinity at the A2A and A1 receptors with selectivity vs. the A3 subtype. A molecular modeling study suggests that differences in affinity toward A1, A2A, and A3 receptors could be ascribed to two residues: one in the EL2, E168 in human A2A/E172 in human A1, that is occupied by the hydrophobic residue V169 in the human A3 receptor; and the other in TM6, occupied by H250/H251 in human A2A and A1 receptors and by a less bulky S247 in the A3 receptor. In the end, these findings could help to design new subtype-selective adenosine receptor ligands.


Assuntos
Antagonistas de Receptores Purinérgicos P1 , Receptores Purinérgicos P1 , Humanos , Relação Estrutura-Atividade , Antagonistas de Receptores Purinérgicos P1/farmacologia , Modelos Moleculares , Pirimidinas/farmacologia , Pirimidinas/química
2.
ChemMedChem ; 18(21): e202300299, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37675643

RESUMO

The A3 adenosine receptor is an interesting target whose role in cancer is controversial. In this work, a structural investigation at the 2-position of the [1,2,4]triazolo[1,5-c]pyrimidine nucleus was performed, finding new potent and selective A3 adenosine receptor antagonists such as the ethyl 2-(4-methoxyphenyl)-5-(methylamino)-[1,2,4]triazolo[1,5-c]pyrimidine-8-carboxylate (20, DZ123) that showed a Ki value of 0.47 nM and an exceptional selectivity profile over the other adenosine receptor subtypes. Computational studies were performed to rationalize the affinity and the selectivity profile of the tested compounds at the A3 adenosine receptor and the A1 and A2A adenosine receptors. Compound 20 was tested on both A3 adenosine receptor positive cell lines (CHO-A3 AR transfected, THP1 and HCT16) and on A3 negative cancer cell lines, showing no effect in the latter and a pro-proliferative effect at a low concentration in the former. These interesting results pave the way to further investigation on both the mechanism involved and potential therapeutic applications.


Assuntos
Neoplasias , Receptor A3 de Adenosina , Cricetinae , Animais , Relação Estrutura-Atividade , Receptor A3 de Adenosina/metabolismo , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/metabolismo , Linhagem Celular , Pirimidinas/química , Antagonistas de Receptores Purinérgicos P1/farmacologia , Antagonistas de Receptores Purinérgicos P1/química , Células CHO , Receptor A2A de Adenosina
3.
Molecules ; 27(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35458588

RESUMO

The A2A adenosine receptor (A2AAR) is one of the four subtypes activated by nucleoside adenosine, and the molecules able to selectively counteract its action are attractive tools for neurodegenerative disorders. In order to find novel A2AAR ligands, two series of compounds based on purine and triazolotriazine scaffolds were synthesized and tested at ARs. Compound 13 was also tested in an in vitro model of neuroinflammation. Some compounds were found to possess high affinity for A2AAR, and it was observed that compound 13 exerted anti-inflammatory properties in microglial cells. Molecular modeling studies results were in good agreement with the binding affinity data and underlined that triazolotriazine and purine scaffolds are interchangeable only when 5- and 2-positions of the triazolotriazine moiety (corresponding to the purine 2- and 8-positions) are substituted.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Antagonistas de Receptores Purinérgicos P1 , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas de Receptores Purinérgicos P1/farmacologia , Purinas/química , Receptor A2A de Adenosina/metabolismo , Relação Estrutura-Atividade
4.
RSC Med Chem ; 12(2): 254-262, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-34046614

RESUMO

A3 adenosine receptors were found to have a role in different pathological states, such as glaucoma, renal fibrosis, neuropathic pain and cancer. Consequently, it is important to utilize any molecular tool which could help to study these conditions. In the present study we continue our search for potent A3 adenosine receptor ligands which could be successively conjugated to other molecules with the aim of obtaining more potent (e.g. allosteric ligand conjugation) or detectable ligands (e.g. fluorescent molecule or biotin conjugation). Specifically, different aminoester moieties were introduced at the 5 position of the pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine core. The ester functionalization represents the candidate for the subsequent conjugation. All the reported compounds are potent hA3 adenosine receptor antagonists and some of them exhibited high selectivity against the other adenosine receptors. The main structural terms of ligand recognition and selectivity were disclosed by molecular modelling studies. Molecular docking results led to the characterization of an alternative binding mode for antagonists at the orthosteric binding site of the hA3 adenosine receptor, evaluated and assessed by classical molecular dynamics simulations.

5.
Curr Drug Discov Technol ; 18(5): e26082020185360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32860362

RESUMO

BACKGROUND: Adenosine receptors (AR) have emerged as competent and innovative nondopaminergic targets for the development of potential drug candidates and thus constitute an effective and safer treatment approach for Parkinson's disease (PD). Xanthine derivatives are considered as potential candidates for the treatment Parkinson's disease due to their potent A2A AR antagonistic properties. OBJECTIVE: The objectives of the work are to study the impact of substituting N7-position of 8-m/pchloropropoxyphenylxanthine structure on in vitro binding affinity of compounds with various AR subtypes, in vivo antiparkinsonian activity and binding modes of newly synthesized xanthines with A2A AR in molecular docking studies. METHODS: Several new 7-substituted 8-m/p-chloropropoxyphenylxanthine analogues have been prepared. Adenosine receptor binding assays were performed to study the binding interactions with various subtypes and perphenazine induced rat catatonia model was used for antiparkinsonian activity. Molecular docking studies were performed using Schrödinger molecular modeling interface. RESULTS: 8-para-substituted xanthine 9b bearing an N7-propyl substituent displayed the highest affinity towards A2A AR (Ki = 0.75 µM) with moderate selectivity versus other AR subtypes. 7-Propargyl analogue 9d produced significantly long-lasting antiparkinsonian effects and also produced potent and selective binding affinity towards A2A AR. In silico docking studies further highlighted the crucial structural components required to develop xanthine derived potential A2A AR ligands as antiparkinsonian agents. CONCLUSION: A new series of 7-substituted 8-m/p-chloropropoxyphenylxanthines having good affinity for A2A AR and potent antiparkinsonian activity has been developed.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Doença de Parkinson , Adenosina , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Simulação de Acoplamento Molecular , Doença de Parkinson/tratamento farmacológico , Ratos , Receptor A2A de Adenosina , Relação Estrutura-Atividade , Teofilina
6.
Curr Drug Discov Technol ; 18(5): e22092020186181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32962622

RESUMO

BACKGROUND: 8-Phenyltheophylline derivatives exhibit prophylactic effects at a specific dose but do not produce the cardiovascular or emetic side effects associated with xanthines, thereby exhibiting unique characteristics of potential therapeutic importance. METHODS: Novel series of 8-(proline/pyrazole)-substituted xanthine analogs have been synthesized. The affinity and selectivity of compounds to adenosine receptors have been assessed by radioligand binding studies. The synthesized compounds also showed good bronchospasmolytic properties (increased onset of bronchospasm; decreased duration of jerks) with 100% survival of animals in comparison to the standard drug. Besides, compound 8f & 9f showed good binding affinity in comparison to other synthesized compounds in the micromolar range. RESULTS: The maximum binding affinity of these compounds was observed for A2B receptors, which was ~ 7 or 10 times higher as compared to A1, A2A and A3 receptors. The newly synthesized derivatives 8f, 9a-f, 17g-m, and 18g-m displayed significant protection against histamine aerosol induced bronchospasm in guinea pigs. CONCLUSION: Newly synthesized proline/pyrazole based xanthines compounds showed a satisfactory binding affinity for adenosine receptor subtypes. Replacement or variation of substituted proline ring with substituted pyrazole scaffold at the 8th-position of xanthine moiety resulted in the reduction of adenosine binding affinity and bronchospasmolytic effects.


Assuntos
Adenosina , Prolina , Animais , Cobaias , Pirazóis , Relação Estrutura-Atividade , Xantinas
7.
Sci Rep ; 10(1): 20781, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247159

RESUMO

The adenosine A3 receptor (A3R) belongs to a family of four adenosine receptor (AR) subtypes which all play distinct roles throughout the body. A3R antagonists have been described as potential treatments for numerous diseases including asthma. Given the similarity between (adenosine receptors) orthosteric binding sites, obtaining highly selective antagonists is a challenging but critical task. Here we screen 39 potential A3R, antagonists using agonist-induced inhibition of cAMP. Positive hits were assessed for AR subtype selectivity through cAMP accumulation assays. The antagonist affinity was determined using Schild analysis (pA2 values) and fluorescent ligand binding. Structure-activity relationship investigations revealed that loss of the 3-(dichlorophenyl)-isoxazolyl moiety or the aromatic nitrogen heterocycle with nitrogen at α-position to the carbon of carboximidamide group significantly attenuated K18 antagonistic potency. Mutagenic studies supported by molecular dynamic simulations combined with Molecular Mechanics-Poisson Boltzmann Surface Area calculations identified the residues important for binding in the A3R orthosteric site. We demonstrate that K18, which contains a 3-(dichlorophenyl)-isoxazole group connected through carbonyloxycarboximidamide fragment with a 1,3-thiazole ring, is a specific A3R (< 1 µM) competitive antagonist. Finally, we introduce a model that enables estimates of the equilibrium binding affinity for rapidly disassociating compounds from real-time fluorescent ligand-binding studies. These results demonstrate the pharmacological characterisation of a selective competitive A3R antagonist and the description of its orthosteric binding mode. Our findings may provide new insights for drug discovery.


Assuntos
Antagonistas do Receptor A3 de Adenosina/química , Antagonistas do Receptor A3 de Adenosina/farmacologia , Antagonistas do Receptor A3 de Adenosina/farmacocinética , Animais , Sítios de Ligação/genética , Ligação Competitiva , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Cinética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ensaio Radioligante , Ratos , Receptor A3 de Adenosina/química , Receptor A3 de Adenosina/genética , Receptor A3 de Adenosina/metabolismo , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/genética , Receptores Purinérgicos P1/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Relação Estrutura-Atividade
8.
Naunyn Schmiedebergs Arch Pharmacol ; 393(11): 2239, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32870337

RESUMO

The original published online version contains mistake in the Title and in Abstract section.

9.
Molecules ; 25(18)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961824

RESUMO

Adenosine receptors (ARs) play an important role in neurological and psychiatric disorders such as Alzheimer's disease, Parkinson's disease, epilepsy and schizophrenia. The different subtypes of ARs and the knowledge on their densities and status are important for understanding the mechanisms underlying the pathogenesis of diseases and for developing new therapeutics. Looking for new scaffolds for selective AR ligands, coumarin-chalcone hybrids were synthesized (compounds 1-8) and screened in radioligand binding (hA1, hA2A and hA3) and adenylyl cyclase (hA2B) assays in order to evaluate their affinity for the four human AR subtypes (hARs). Coumarin-chalcone hybrid has been established as a new scaffold suitable for the development of potent and selective ligands for hA1 or hA3 subtypes. In general, hydroxy-substituted hybrids showed some affinity for the hA1, while the methoxy counterparts were selective for the hA3. The most potent hA1 ligand was compound 7 (Ki = 17.7 µM), whereas compound 4 was the most potent ligand for hA3 (Ki = 2.49 µM). In addition, docking studies with hA1 and hA3 homology models were established to analyze the structure-function relationships. Results showed that the different residues located on the protein binding pocket could play an important role in ligand selectivity.


Assuntos
Chalcona/química , Chalconas/química , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Sítios de Ligação , Chalcona/metabolismo , Chalconas/metabolismo , Desenho de Fármacos , Humanos , Cinética , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Receptor A1 de Adenosina/química , Receptor A2A de Adenosina/química , Receptor A3 de Adenosina/química , Relação Estrutura-Atividade
10.
ChemMedChem ; 15(20): 1909-1920, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32706529

RESUMO

The A3 adenosine receptor (AR) is a G protein-coupled receptor (GPCR) overexpressed in the membrane of specific cancer cells. Thus, the development of nanosystems targeting this receptor could be a strategy to both treat and diagnose cancer. Iron-filled carbon nanotubes (CNTs) are an optimal platform for theranostic purposes, and the use of a magnetic field can be exploited for cancer magnetic cell sorting and thermal therapy. In this work, we have conjugated an A3 AR ligand on the surface of iron-filled CNTs with the aim of targeting cells overexpressing A3 ARs. In particular, two conjugates bearing PEG linkers of different length were designed. A docking analysis of A3 AR showed that neither CNT nor linker interferes with ligand binding to the receptor; this was confirmed by in vitro preliminary radioligand competition assays on A3 AR. Encouraged by this result, magnetic cell sorting was applied to a mixture of cells overexpressing or not the A3 AR in which our compound displayed indiscriminate binding to all cells. Despite this, it is the first time that a GPCR ligand has been anchored to a magnetic nanosystem, thus it opens the door to new applications for cancer treatment.


Assuntos
Separação Celular/métodos , Nanotubos de Carbono/química , Receptor A3 de Adenosina/metabolismo , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Humanos , Ferro/química , Fenômenos Magnéticos , Pirazóis/síntese química , Pirazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Triazóis/síntese química , Triazóis/química
11.
Chem Biol Drug Des ; 95(6): 600-609, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32100461

RESUMO

The aldehyde derivatives of 1,3-dipropyl xanthines as described in this paper, constitutes a new series of selective adenosine ligands displaying bronchospasmolytic activity. The effect of substitution at third- and fourth-position of 8-phenyl xanthine has also been taken into consideration. The synthesized compounds showed varying binding affinities at different adenosine receptor subtypes (A1 , A2A , A2B , and A3 ) and also good in vivo bronchospasmolytic activity against histamine aerosol-induced asthma in guinea pigs. Most of the compounds showed maximum affinity toward the A2A receptor subtype. The monosubstituted 3-aminoalkoxyl 8-phenyl xanthine with a aminodiethyl moiety (compound 12e) was found to be most potent A2A adenosine receptor ligand (Ki  = 0.036 µM) followed by disubstituted 4-aminoalkoxyl-3-methoxy-8-phenyl xanthine (Ki  = 0.050 µM) (compound 10a).


Assuntos
Broncodilatadores/química , Receptores Purinérgicos P1/metabolismo , Bibliotecas de Moléculas Pequenas/química , Xantinas/química , Adenosina/química , Aerossóis , Animais , Broncodilatadores/farmacologia , Desenho de Fármacos , Cobaias , Histamina/química , Humanos , Ligantes , Ligação Proteica , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Xantinas/farmacologia
12.
J Med Chem ; 63(5): 2577-2587, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31738058

RESUMO

Adenosine receptors participate in many physiological functions. Molecules that may selectively interact with one of the receptors are favorable multifunctional chemical entities to treat or decelerate the evolution of different diseases. 3-Arylcoumarins have already been studied as neuroprotective agents by our group. Here, differently 8-substituted 3-arylcoumarins are complementarily studied as ligands of adenosine receptors, performing radioligand binding assays. Among the synthesized compounds, selective A3 receptor antagonists were found. 3-(4-Bromophenyl)-8-hydroxycoumarin (compound 4) displayed the highest potency and selectivity as A3 receptor antagonist (Ki = 258 nM). An analysis of its X-ray diffraction provided detailed information on its structure. Further evaluation of a selected series of compounds indicated that it is the nature and position of the substituents that determine their activity and selectivity. Theoretical modeling calculations corroborate and explain the experimental data, suggesting this novel scaffold can be involved in the generation of candidates as multitarget drugs.


Assuntos
Antagonistas do Receptor A3 de Adenosina/química , Antagonistas do Receptor A3 de Adenosina/farmacologia , Cumarínicos/química , Cumarínicos/farmacologia , Receptor A3 de Adenosina/metabolismo , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Modelos Moleculares , Receptor A3 de Adenosina/química , Relação Estrutura-Atividade
13.
Molecules ; 24(20)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614517

RESUMO

Human A3 adenosine receptor hA3AR has been implicated in gastrointestinal cancer, where its cellular expression has been found increased, thus suggesting its potential as a molecular target for novel anticancer compounds. Observation made in our previous work indicated the importance of the carbonyl group of amide in the indolylpyrimidylpiperazine (IPP) for its human A2A adenosine receptor (hA2AAR) subtype binding selectivity over the other AR subtypes. Taking this observation into account, we structurally modified an indolylpyrimidylpiperazine (IPP) scaffold, 1 (a non-selective adenosine receptors' ligand) into a modified IPP (mIPP) scaffold by switching the position of the carbonyl group, resulting in the formation of both ketone and tertiary amine groups in the new scaffold. Results showed that such modification diminished the A2A activity and instead conferred hA3AR agonistic activity. Among the new mIPP derivatives (3-6), compound 4 showed potential as a hA3AR partial agonist, with an Emax of 30% and EC50 of 2.89 ± 0.55 µM. In the cytotoxicity assays, compound 4 also exhibited higher cytotoxicity against both colorectal and liver cancer cells as compared to normal cells. Overall, this new series of compounds provide a promising starting point for further development of potent and selective hA3AR partial agonists for the treatment of gastrointestinal cancers.


Assuntos
Neoplasias Gastrointestinais/tratamento farmacológico , Pirimidinonas/química , Receptor A2A de Adenosina/genética , Receptor A3 de Adenosina/genética , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Células CHO , Proliferação de Células/efeitos dos fármacos , Cricetinae , Cricetulus , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Humanos , Indóis/síntese química , Indóis/química , Indóis/farmacologia , Modelos Moleculares , Piperazina/síntese química , Piperazina/química , Piperazina/farmacologia , Pirimidinonas/síntese química , Pirimidinonas/farmacologia , Receptor A2A de Adenosina/química , Relação Estrutura-Atividade
14.
Medchemcomm ; 10(7): 1094-1108, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31391881

RESUMO

A series of adenosine receptor antagonists bearing a reactive linker was developed. Functionalization of these derivatives is useful to easily obtain multi-target ligands, receptor probes, drug delivery systems, and diagnostic or theranostic systems. The pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine scaffold was chosen as a pharmacophore for the adenosine receptors. It was substituted at the 5 position with reactive linkers of different lengths. Then, these compounds were used to synthesise probes for the adenosine receptors by functionalization with a fluorescent moiety. Both series of compounds were evaluated for their binding at the four adenosine receptor subtypes. Different affinity and selectivity profiles were observed towards hA1, hA2A and hA3 adenosine receptors. In particular, fluorescent compounds behave as dual hA2A/hA3 ligands. Computational studies suggested different binding modes for developed compounds at the three receptors. Both molecular docking and supervised molecular dynamics (SuMD) simulations confirmed that the preferred binding mode at the single receptor was driven by the substitution present at the 5 position. Obtained results rationalized the compounds' binding profile at the adenosine receptors and pave the way for the development of more potent conjugable and conjugated ligands targeting these membrane receptors.

15.
Biochem J ; 476(16): 2371-2391, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31409652

RESUMO

Saturated free fatty acid-induced adipocyte inflammation plays a pivotal role in implementing insulin resistance and type 2 diabetes. Recent reports suggest A2A adenosine receptor (A2AAR) could be an attractive choice to counteract adipocyte inflammation and insulin resistance. Thus, an effective A2AAR agonist devoid of any toxicity is highly appealing. Here, we report that indirubin-3'-monoxime (I3M), a derivative of the bisindole alkaloid indirubin, efficiently binds and activates A2AAR which leads to the attenuation of lipid-induced adipocyte inflammation and insulin resistance. Using a combination of in silico virtual screening of potential anti-diabetic candidates and in vitro study on insulin-resistant model of 3T3-L1 adipocytes, we determined I3M through A2AAR activation markedly prevents lipid-induced impairment of the insulin signaling pathway in adipocytes without any toxic effects. While I3M restrains lipid-induced adipocyte inflammation by inhibiting NF-κB dependent pro-inflammatory cytokines expression, it also augments cAMP-mediated CREB activation and anti-inflammatory state in adipocytes. However, these attributes were compromised when cells were pretreated with the A2AAR antagonist, SCH 58261 or siRNA mediated knockdown of A2AAR. I3M, therefore, could be a valuable option to intervene adipocyte inflammation and thus showing promise for the management of insulin resistance and type 2 diabetes.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Adipócitos/metabolismo , Indóis/farmacologia , Resistência à Insulina , Lipídeos/toxicidade , Oximas/farmacologia , Receptor A2A de Adenosina/metabolismo , Células 3T3-L1 , Adipócitos/patologia , Animais , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Transdução de Sinais/efeitos dos fármacos
16.
Bioorg Chem ; 92: 103183, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31446240

RESUMO

Adenosine receptor antagonists are generally based on heterocyclic core structures presenting substituents of various volumes and chemical-physical profiles. Adenine and purine-based adenosine receptor antagonists have been reported in literature. In this work we combined various substituents in the 2, 6, and 8-positions of 9-ethylpurine to depict a structure-affinity relationship analysis at the human adenosine receptors. Compounds were rationally designed trough molecular modeling analysis and then synthesized and evaluated at radioligand binding studies at human adenosine receptors. The new compounds showed affinity for the human adenosine receptors, with some derivatives endowed with low nanomolar Ki data, in particular at the A2AAR subtype. The purine core proves to be a versatile core structure for the development of novel adenosine receptor antagonists with nanomolar affinity for these membrane proteins.


Assuntos
Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/metabolismo , Purinas/síntese química , Purinas/metabolismo , Receptor A2A de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Cricetulus , Humanos , Ligantes , Masculino , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Ensaio Radioligante , Ratos Wistar , Relação Estrutura-Atividade
17.
Naunyn Schmiedebergs Arch Pharmacol ; 392(12): 1515-1521, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31338535

RESUMO

It is well established that some receptor types including G protein-coupled receptors may transduce effects through more than one signaling pathway. This holds also true for A2B adenosine receptors which were shown to trigger an increase in intracellular Ca2+ levels in addition to the canonical stimulation of adenylyl cyclase. We have recently shown that activation of A2B receptors in the breast cancer cell line MBA-MD-231 elicits a reduction in ERK1/2 phosphorylation, an effect that might be exploited in treatment of cancer cell growth and proliferation. In this study, we investigate whether structurally divers agonists show functional selectivity for any of the signaling pathways leading to an increase of intracellular cAMP or Ca2+, or the reduction of ERK1/2 phosphorylation. As agonists, adenosine derivatives were used bearing different substitutions in 2- and 6-position and, in addition, a ligand with a non-nucleoside structure was tested. It was found that all the tested ligands showed similar pharmacological profiles for the three responses investigated in MBA-MD-231 cells. However, the reduction of ERK1/2 phosphorylation occurred with 40-500-fold higher potency compared to stimulation of adenylyl cyclase or increasing intracellular Ca2+ levels. Based on these observations, it seems possible to utilize activation of A2B adenosine receptors expressed in certain cancers to limit cell growth and proliferation due to reduction of MAPK activity without activation of other signaling pathways potentially responsible for side effects.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Neoplasias da Mama/metabolismo , Receptor A2B de Adenosina/metabolismo , Adenilil Ciclases , Cálcio/metabolismo , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
18.
Curr Pharm Des ; 25(25): 2697-2715, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333094

RESUMO

Adenosine is a purine nucleoside, responsible for the regulation of a wide range of physiological and pathophysiological conditions by binding with four G-protein-coupled receptors (GPCRs), namely A1, A2A, A2B and A3 adenosine receptors (ARs). In particular, A1 AR is ubiquitously present, mediating a variety of physiological processes throughout the body, thus represents a promising drug target for the management of various pathological conditions. Agonists of A1 AR are found to be useful for the treatment of atrial arrhythmia, angina, type-2 diabetes, glaucoma, neuropathic pain, epilepsy, depression and Huntington's disease, whereas antagonists are being investigated for the treatment of diuresis, congestive heart failure, asthma, COPD, anxiety and dementia. However, treatment with full A1 AR agonists has been associated with numerous challenges like cardiovascular side effects, off-target activation as well as desensitization of A1 AR leading to tachyphylaxis. In this regard, partial agonists of A1 AR have been found to be beneficial in enhancing insulin sensitivity and subsequently reducing blood glucose level, while avoiding severe CVS side effects and tachyphylaxis. Allosteric enhancer of A1 AR is found to be potent for the treatment of neuropathic pain, culminating the side effects related to off-target tissue activation of A1 AR. This review provides an overview of the medicinal chemistry and therapeutic potential of various agonists/partial agonists, antagonists and allosteric modulators of A1 AR, with a particular emphasis on their current status and future perspectives in clinical settings.


Assuntos
Química Farmacêutica , Agonistas do Receptor Purinérgico P1/farmacologia , Antagonistas de Receptores Purinérgicos P1/farmacologia , Receptores Purinérgicos P1/metabolismo , Regulação Alostérica , Humanos
19.
Drug Discov Today ; 24(9): 1769-1783, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31102728

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons. Motor features such as tremor, rigidity, bradykinesia and postural instability are common traits of PD. Current treatment options provide symptomatic relief to the condition but are unable to reverse disease progression. The conventional single-target therapeutic approach might not always induce the desired effect owing to the multifactorial nature of PD. Hence, multitarget strategies have been proposed to simultaneously target multiple proteins involved in the development of PD. Herein, we provide an overview of the pathogenesis of PD and the current pharmacotherapies. Furthermore, rationales and examples of multitarget approaches that have been tested in preclinical trials for the treatment of PD are also discussed.


Assuntos
Antiparkinsonianos/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Antiparkinsonianos/química , Progressão da Doença , Neurônios Dopaminérgicos/metabolismo , Humanos , Doença de Parkinson/metabolismo
20.
Bioorg Chem ; 87: 601-612, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30933785

RESUMO

In the present study, an attempt has been made to develop a new series of 1,3,7,8-tetrasubstituted xanthine based potent and selective AR ligands for the treatment of Parkinson's disease. Antagonistic interactions between dopamine and A2A adenosine receptors serve as the basis for the development of AR antagonists as potential drug candidates for PD. All the synthesized compounds have been evaluated for their affinity toward AR subtypes using in vitro radioligand binding assays. 1,3-Dipropylxanthine 7a with a methyl substituent at N-7 position represents the most potent compound of the series and displayed highest affinity (A2A, Ki = 0.108 µM), however incorporation of a propargyl group at 7-positon of the xanthine nucleus seems to be the most appropriate substitution to improve selectivity towards the A2A subtype along with reasonable potency. Antiparkinsonian activity has been evaluated using perphenazine induced catatonia in rats. Most of the synthesized xanthines significantly lowered the catatonic score as compared to control and displayed antiparkinsonian effects comparable to standard drug. All the synthesized compounds were subjected to grid-based molecular docking studies to understand the key structural requirements for the development of new molecules well-endowed with intrinsic efficacy and selectivity as adenosine receptor ligands. In silico studies carried out on newly synthesized xanthines provided further support to the pharmacological results.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Antiparkinsonianos/farmacologia , Modelos Animais de Doenças , Doença de Parkinson/tratamento farmacológico , Receptor A2A de Adenosina/metabolismo , Xantinas/farmacologia , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/química , Animais , Antiparkinsonianos/síntese química , Antiparkinsonianos/química , Células Cultivadas , Ligantes , Modelos Moleculares , Estrutura Molecular , Doença de Parkinson/metabolismo , Ratos , Xantinas/síntese química , Xantinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...